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Introduction 

Breast cancer is the second most common cancer type affecting American women. The 
disease is also the second leading cause of cancer-related death for American women, 
which was predicted to kill 40,460 women in 2007. 1 Presently there is no effective way 
of preventing the disease. However, the detection of the cancer at its early stage has been 
found to significantly improve the survival rates 2-5. Moreover, there are more treatment 
options for a patient with earlier stage cancer than whose with a late stage of cancer 6-8. 
Film-screen X-ray mammography is still the only FDA approved screening tool aiming at 
early detection of the breast cancer. While it has been proven to be effective, it is not 
omnipotent in its detection sensitivity of breast lesions due to several limitations such as 
two-dimensional (2D) projection data acquisition and restricted range of linear optical 
response of the detector. For women with dense breasts, the sensitivity is lower since in 
their mammograms the dense appearance of the breast tissue is more likely to obscure 
any abnormalities and makes the detection of breast cancer even more challenging 9.  
With the development of flat-panel detectors in recent years, the dedicated cone-beam CT 
technology became feasible. By tomographic reconstruction, the issue of tissue 
overlapping is solved. The technology is potentially advantageous for women with dense 
breasts. A research group in University of California Davis is currently conducting 
clinical trials.10 The reconstructed volumes of human subjects provide exciting new 3D 
information about breasts that is never seen before. Yet, at its early stage of development, 
breast CT technology need to be advanced.  
What this project is addressing is the post-acquisition image processing techniques to 
improve the reconstructed breast CT image quality. Firstly, the raw projection images of 
breast CT are acquired without using an anti-scatter grid. The residual scattered radiation 
in the projections has to be reduced via some post-acquisition techniques. Secondly, the 
breast CT data are obtained with the same dose as the standard two-view mammography. 
When this level of dose is equally split into around 500 projections, each projection 
contains considerable noise. So does the reconstructed volume. Therefore, it is desirable 
to have some image processing tools for noise removal.  
The proposed project is a collaborative effort between our group at Duke and Dr. 
Boone’s group in University of California Davis. Based on the raw data provided by 
them, we will develop the techniques for image improvement via the scatter 
compensation and/or denoising. 

Report Body 

Task 1: Develop and test a unique two-dimensional Bayesian image processing 
technique on the projection data of cone-beam breast Computed Tomography 
(breast CT) obtained without a grid.  
This task has been completed and the results are incorporated into the papers listed under 
the category of reportable outcomes. This task is split into two subtasks. The first subtask 
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is to develop an algorithm for scattered radiation removal. The second subtask is to 
reduce the quantum noise from breast CT data. 
Firstly, an algorithm is designed and implemented for scatter reduction. To account for 
the energy-integrating characteristic of the flat-panel digital detector, Gaussian 
distributions are used to approximate the signals recorded at individual pixels of the 
detector. For the task of removing scattered radiation, the Gaussian noise model is 
proposed. The Maximum Likelihood Estimator (MLE) is obtained via an Expectation 
Maximization algorithm in an iterative manner. As the image is processed through many 
iteration steps, the high frequency noise in the image will be also amplified. In order to 
suppress this side effect, the Maximum A Posteriori (MAP) estimator is obtained by 
combining the Gaussian noise model with a Gibbs prior via Bayes rule. It is calculated by 
the procedure proposed by Hebert and Leahy11. 
Figure1 shows the comparison between the original image and MAP estimate of the 
scatter-free image. Table 1 is the residual scatter fraction (RSF) and contrast to noise 
ratio (CNR) measurements on these three images. It is shown that with our algorithm, the 
scattered radiation on the images acquired without a grid can be reduced down to the 
level achieved by using a grid. Meanwhile, the CNR of the processed image is twice that 
of the image acquired with a grid.  
 

             (a)     (b)          (c) 
   
 
 
 
 
 
 
Figure 1: Radiographs of an anthropomorphic breast phantom acquired on Siemens prototype FFDM 
system (a) with and (b) without an anti-scatter grid; (b) the MAP algorithm processed image based on (b).  
The white disks are the beam stop (made of lead) array for scatter radiation measurement. 

 

Table 1: Corresponding residual scatter fraction (RSF) and contrast to noise ratio (CNR) results for the 
three images shown in Figure 1.  
 With grid Without grid Without grid; scatter reduction 
RSF 11% 45% 10% 
CNR 7.04 6.99 15.29 
 
Secondly, a partial-diffusion-equation based denoising technique was developed for noise 
removal in breast CT. It is observed that the line integral images (converted from the raw 
images by logarithmic operation) have the following property: line integrals through the 
center of the breast have much higher variance than those through the edge of the breast. 
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We derived a theoretical formula between the line integral variance and the number of 

photons hitting the detector for a specific pixel region: 

! 

var(lij ) "
1

#ij
. The details of the 

derivation can be found in the paper corresponding to reportable outcome #1. Based on 
this formalism we propose a PDEtomo (abbreviation for: PDE for 
tomography/tomosynthesis) algorithm for breast CT data.  
   
Task 2: Reconstruct the three-dimensional breast image based on the processed 
projection data from Task 1.  
This task has already been completed and some results are shown in the reportable 
outcome #1. A Feldkamp-type filtered back projection (FBP) algorithm12 was custom-
written and used for the cone-beam reconstruction of the breast CT data. 
For the results shown in Figure 2, the PDEtomo technique was applied to the line integral 
images converted from raw projections. The processed projection images were then fed 
into the FBP core for reconstruction. The reconstructed breast CT volume provides 
unique anatomic information of the breast that is not available before. In addition, the 
PDEtomo technique is very effective in removing the noise while maintaining the details. 
 

 
Figure 2: Reconstructed coronal sections of a breast of a human subject. The section thickness is 0.5mm. 
The top row is derived with the original dataset. The bottom row is derived with the PDEtomo processed 
dataset. It is manifest that PDEtomo processed volume has remarkable less noise than the original volume. 

 
Task 3: Apply the algorithm in Task 1 to the two-dimensional slices of the 
reconstructed three-dimensional breast image from the unprocessed projection data.  
This task has been completed. A two-dimensional PDE denoising technique (denoted by 
PDE2D) was developed and coded.  
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The PDE2D algorithm was applied after reconstruction on each of the reconstructed slices 
to remove the noise. By contrast, the PDEtomo technique presented in Task 1 is 
intrinsically a three-dimensional technique, which is applied to the projection images 
before tomographic reconstruction. The results of these two techniques are compared 
with each other. One such example is shown in Figure 3. Figure 3(a) is the same slice as 
shown in #2 in the bottom row of Figure 2. That is, the volume was processed by the 
PDEtomo algorithm. Figure 3(b) is the one processed by PDE2D algorithm. The parameters 
of the techniques are adjusted such that they have about the same level of noise within the 
fatty tissue region. However, Figure 3(a) has much better anatomical depiction than 
Figure 3(b). The likely explanations for this are as follows. Because the existence of the 
noise (both quantum noise and electronic noise) in the projection images, some 
anatomical details are lost during tomographic reconstruction. By removing the noise first, 
as the PDEtomo technique does, some anatomical details can be recovered. By contrast, 
since PDE2D technique is used after FBP reconstruction, it cannot restore the lost 
anatomical detail information. Thus, we concluded that the denoising strategy in this 
specific task is inferior to the one in Task 1.  

   (a)                       (b) 

 

Figure 3: Processed and reconstructed coronal sections of the same breast as in Figure 2, using the 
denoising strategies in (a) Task1 and (b) Task3, respectively. The two slices have approximately the same 
level of noise removal. The one on the left shows more anatomical details than the one on the right. 

Task 4: Develop and test three-dimensional Bayesian image-processing technique on 
the reconstructed image based on the unprocessed projection data acquired without 
a grid.  
 
This task has almost been completed. A three-dimensional PDE technique (PDE3D) has 
been developed and is currently under further evaluation. The PDE3D technique differs 
from PDE2D in that it has a three-dimensional neighborhood system.    
In addition, we are exploring a PDE3D counterpart to be applied before tomographic 
reconstruction.  
This task should be completed within half a month. 
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Task 5: Develop a Computer Aided Diagnosis tool for detecting breast mass lesions 
based on the projection data.  
 
This task is a work in progress. Some preliminary work has been done.  
 
The 20 human volunteer datasets were requested from the collaborating group in 
University of California Davis. The breast volumes were reconstructed for each case. 
Then the afore-mentioned PDEtomo technique was applied to the breast CT datasets as 
described in Task2.  
 
A computer-based virtual x-ray CT imager is developed. It uses the same parameters as 
the physical breast CT system. A routine for simulation of masses with random shape is 
also written. Putting the simulated mass into the virtual imager, the projection images can 
be obtained. The simulated projection images with known mass are then obtained by 
summing up the projection images from the virtual imager and the clinical projection 
images.  
 
The CAD tool based on signal known exactly (SKE) scenario is under development. 
 
Task 6: Test and compare the performances of the CAD developed in Task 5 
applied to processed projection data from Task 1 with the CAD performance on the 
projection data without Bayesian processing.  
Once the CAD in task 5 is completely developed, this task will be carried out to compare 
the CAD performances on original and processed datasets. 

Key Research Accomplishments 

• Proposed and developed the Gaussian noise model; 
• Proposed and developed a PDEtomo algorithm for volume denoising in breast CT; 
• Clinical breast CT data have been reconstructed; 
• Application of the PDEtomo algorithm on simulation data and clinical data has 

shown improvement of image quality using CNR and resolution as figures of 
merit. 

• Developed PDE2D and PDE3D techniques; 
• A virtual breast CT imager was developed. 
• A routine for 3D mass simulation with random shape was written. 

Reportable Outcomes 

Two publications were resulted from this project in the second fiscal year, including a 
peer-reviewed paper and a conference proceeding. They are attached to the end of the 
report as appendices. Both the name of PI (Jessie Q. Xia) and the name of the advisor 
(Joseph Y. Lo) are bolded. 
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1. Jessie Q. Xia, Joseph Y. Lo, Kai Yang, Carey E. Floyd Jr., John M. Boone, Dedicated 
Breast CT: Volume Image Denoising via a Partial Diffusion Equation Based Technique. 
Medical Physics (submitted). 

2. Jessie Q. Xia, Georgia D. Tourassi, Joseph Y. Lo, Carey E. Floyd Jr., On the 
Development of a Gaussian Noise Model for Scatter Compensation. Proceedings of SPIE 
Medical Imaging 2007 (in press). 

Conclusions 

Dedicated breast CT imaging is a promising technique for breast cancer imaging. Since it 
can totally remove the overlapping of tissues, it will be even more beneficial for women 
with dense breasts. 
Still, there is a lot to be done for advancing the breast CT technology. One direction of 
development is to improve the image quality via some post-acquisition processing 
techniques, which is the goal of this project. Specifically, two subtasks are considered: 1) 
to remove scattered radiation, and 2) to remove noise. So far, some techniques have been 
designed and developed, and results show that they are effective for the specific tasks. 
The project has progressed to the stage where a computer aided diagnosis tool is under 
development for the assessment of mass detectability based on the original breast CT 
volumes and those with image processing. 
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Dedicated Breast Computed Tomography: Volume Image 
Denoising via A Partial-Diffusion Equation Based 

Technique 
 

Jessie Q. Xia1,2, Joseph Y. Lo1,2,3, Kai Yang4, Carey E. Floyd, Jr.1,2,3 and John M.          5 

Boone4,5  

1 Department of Biomedical Engineering, Duke University, Durham, NC 27708  
2 Duke Advanced Imaging Laboratories, Department of Radiology, Duke University 
Medical Center, Durham, NC 27705 
3 Medical Physics Graduate Program, Duke University Medical Center, Durham, NC 10 
27708 
4 Department of Biomedical Engineering, University of California Davis, Davis, CA 
95616 
5 Department of Radiology, University of California Davis Medical Center, Sacramento, 
CA 95817 15 
 

Abstract: 

Dedicated breast CT imaging possesses the potential for improved lesion detection over 

conventional mammograms, especially for women with dense breasts. The breast CT 

images are acquired with a glandular dose comparable to that of standard two-view 20 

mammography for a single breast. Due to dose constraints, the reconstructed volume has 

a non-negligible quantum noise when thin section CT slices are visualized. It is thus 

desirable to reduce noise in the reconstructed breast volume without loss of spatial 

resolution. In this study, a partial-diffusion equation (PDE) based denoising technique 

specifically for breast CT was developed and applied on the projection data prior to 25 

reconstruction. Simulation results show that the PDE technique outperforms Wiener 

denoising. At the photon fluence level of 2.5e4 for each projection, the noise of PDE 

denoised image was 39.3% of Wiener denoised images, while the resolution was higher. 

The PDE technique increases its performance advantage relative to Wiener techniques 



 10 

when the photon fluence is reduced. For subjective evaluation, the PDE technique was 30 

applied to two human subject breast datasets acquired on a prototype breast CT system. 

The denoised images had appealing visual characteristics with much lower noise levels 

and improved tissue textures while maintaining sharpness of the original reconstructed 

volume.  

 35 

Keywords: breast imaging, breast CT, PDE, volume noise removal 

Running Title:  PDE based volume image denoising in breast CT  
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Introduction 

The most common cancer type that affects women globally other than skin cancer is 40 

breast cancer 1. Moreover breast cancer is a leading cause of cancer-related women 

mortality, secondary only to lung cancer. It is estimated that the disease will kill about 

40,460 US women in 2007 1. Although mammography is the standard clinical screening 

technique 2, 3 for breast imaging, superimposition of normal anatomical structures may 

potentially obscure a breast lesion. The situation gets even worse for women with dense 45 

breasts 4, which have more anatomical noise in the projection image. Researchers are 

developing alternative x-ray breast imaging techniques that may overcome the limitations 

of mammography, including three-dimensional imaging techniques such as breast 

tomosynthesis 5, 6 and dedicated breast CT 7-12. 

Not long after the CT technique was invented in 1972, a group of researchers studied 50 

breast CT imaging 13. They applied the whole-torso-scanning mode and found that a high 

patient dose was needed to achieve adequate image quality. With the advent of high-

resolution flat-panel detectors at the end of the 1990s, the concept of breast CT once 

again came into researchers’ horizon. In particular, a 2001 paper 7 showed that dedicated 

breast CT could achieve quality breast images with dose levels comparable with two-55 

view mammography for the same breast.  

Preliminary human subject data acquired on our first prototype breast CT system 14 

provide exciting new information of the breast that was not available in the past. 

However, because the relatively low total dose must be split among a large number of 

projection views (around 500), reconstructed breast CT thin sections contain considerable 60 

quantum noise. Thus it is desirable to reduce noise levels to improve the conspicuity of 
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breast lesions. At the same time, it is desirable to retain spatial resolution. Alternatively, 

by applying denoising techniques, the gain of improving CT image quality can be 

exchanged for dose reduction while maintaining the image quality.  

For low dose CT, some general-purpose sinogram smoothing techniques based on either 65 

penalized likelihood 15 or penalized weighted least squares 16 were developed. These 

techniques can be potentially applied on dedicated breast CT datasets. Zhong et al 17 

developed a wavelet-based technique and applied it on phantom breast CT data. Their 

results showed that with denoising, dose could be potentially reduced by up to 60%. 

The Partial Diffusion Equation (PDE) based technique 18, 19 is another state-of-the-art 70 

denoising method which is effective not only in removing noise but also in preserving 

detail. Although computationally intensive, this iterative method can provide more 

freedom in choosing the desired denoising effect. In this study, we describe a PDE based 

denoising technique specifically for breast CT and evaluate it both on simulated and 

empirically collected human subject datasets.    75 

The image quality of PDE denoised images was compared against that of standard 

Weiner filtering techniques. Quantitative comparisons were made using simulated data at 

various exposure levels, while qualitative comparisons were made using dedicated breast 

CT scan data from two human subjects. 

 80 
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Materials and Methods 

Dedicated Breast CT System and Human Subject Datasets 85 

As is illustrated in Figure 1, dedicated breast CT systems are typically designed as 

follows: a patient lies supine on a lead-shielded table with one breast hanging through a 

hole on the table in the pendant geometry. The x-ray tube and the flat panel detector 

rotate in the horizontal plance underneath the table. This setup is different from a 

conventional CT system, where the x-ray tube and detector rotate around the torso of a 90 

patient (axial scanning). Since only the breast to be imaged is exposed to the x-ray beam, 

the dose to the patient can be greatly reduced. A pilot study 7 showed that this type of 

dedicated breast CT system is able to achieve a satisfactory image quality with dose 

levels comparable to standard two-view mammography for the same breast.  

Using the above system design, a custom-designed breast CT system was fabricated at 95 

the University of California Davis Medical Center, and is currently accruing patient 

images. The x-ray tube has a Comet beryllium-windowed, water-cooled tungsten anode 

and a nominal focal spot with the size of 0.4 mm x 0.4 mm. A Pantak high frequency x-

ray generator drives the tube with the voltage ranging from 10 kV to 110 kV. The CsI-

based flat panel detector (Varian, PaxScan 4030CB) has a field of view of 40 cm x 30 cm. 100 

Using 30 frames per second and 2 x 2 pixel binning mode, the detector generates the 

images each with matrix size of 1024 x 768 and pixel dimension of 0.388 mm x 0.388 

mm. A Kollmorgen servo motor was employed to drive the rotation of the tube-detector 

gantry as well as encode the angular information. The source-to-isocenter distance is 46.9 

cm and the source-to-detector distance is 88.4 cm. 105 
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For the two human subject datasets presented in this paper, the projection images were 

acquired under 80 kVp using a circular orbit. The mAs values were chosen for each 

subject such that the mean glandular dose using breast CT was equal to two-view 

mammography. Each subject is scanned within 17 seconds to get a total of 500 projection 

images that span slightly over 360 degrees. After dead pixel and flat field corrections, 110 

each dataset is ready for tomographic reconstruction. 

Simulated Breast CT Datasets 

In this study, some simulated breast CT datasets were also generated to aid the analysis. 

The computer-generated breast is a hemisphere with radius of 7cm. It has homogeneous 

breast tissue with a uniform linear attenuation coefficient of 0.28 cm-1 and is surrounded 115 

by 1mm thick skin 20 with linear attenuation coefficient of 0.5 cm-1. A spherical lesion 

with 10% contrast relative to the breast tissue was embedded at the center of the breast. 

This simulated breast was scanned virtually by a monochromatic x-ray cone beam with 

infinitely small focal spot and ideal flat-panel detector with 100% detective quantum 

efficiency. The geometric parameters are the same as the physical breast CT scanner 120 

described in the previous subsection. 

For each 2D projection image, an analytical line integral image was first obtained based 

on the aforementioned virtual dedicated breast CT scanning. A noisy raw image was 

generated according to the measurement model 21. The model takes into account both 

photon quantum noise and electronic read-out noise. It has the following form: 125 

! 

Y
i
=G

i
E " Poisson(I

0
e
#li ) +Gaussian(0,$ 2

),          (1) 

where Gi is the gain factor of the imaging system, 

! 

E  is the mean energy level of the 

polychromatic x-ray beam, and the Gaussian term is for the electronic noise. In our 
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simulation we chose Gi=0.0035 /keV,

! 

E =40 keV, and σ2=10. The values of Gi and σ2 

were referred to those used in 21.  130 

Tomographic Reconstruction 

Before reconstruction, the raw projection images undergo a preprocessing step. The 

simplest preprocessing step is to convert the raw projection image into the line integral 

via the logarithm operation. On each raw projection image, a region of interest (ROI) is 

identified which is outside the breast silhouette, and the pixel value without attenuation 135 

! 

I
0
 is approximated by the mean pixel value with the ROI. Then the line integral image is 

obtained by: 

! 

lij = log(I0 /Iij ), where 

! 

Iij  is the pixel value at (i, j) position.  

Since the datasets have high angular sampling rate, the computationally efficient filtered 

backprojection (FBP) 22 algorithm was chosen for reconstruction. The Feldkamp type 

FBP for cone-beam geometry was custom written and a Shepp-Logan filter was used.  140 

PDE Denoising Technique  

The PDE denoising strategy was inspired by the heat equation, which characterizes the 

spatial temperature distribution as a function of time. When the time period is very long, 

the temperatures tend to be uniform in space, i.e., the temperature image is smoothed. 

Therefore, if an image needs to be denoised, it can be treated as a temperature image and 145 

fed into the heat equation for its smoothed versions as time goes by. The simplest case 

will be the heat propagation in a homogenous media, or equivalently, smoothing equally 

all over the space. The heat equation in this case will be: 

! 

"I

"t
= k#

2
I =# $ (k#I),           (2) 

where k is a scalar diffusivity constant of the homogeneous media, 

! 

"I  is the gradient of 150 

the image I and 

! 

"
2
I =" # ("I) is the Laplace operation on I over the spatial variables 23.  
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This simplest case will smooth out both the noise and the detail such as the edges in the 

image. However, a nonlinear PDE can reduce noise while preserving spatial resolution in 

the image: 

))(( IIp
t
I

!!"!=
#

# ,         (3) 155 

where p(.) is called the diffusivity function, a function of the gradient norm |∇I|. Equation 

(2) is a special case of Equation (3) where p(.) is chosen to be a constant value k. The p(.) 

named diffusivity is a function to regulate the local smoothness. The choice of p(.) is 

critical to PDE-based denoising of images. In this work, we chose a diffusivity function 

proposed by Perona and Malik 18: 160 

! 

p(d) = e
"
d
2

# 2            (4) 

where 

! 

"  is a user-specified parameter. When the image gradient norm is very large at a 

location region, the diffusivity will be very small, and thus the local image values will be 

preserved within a small time period whereas another more uniform region will be 

smoothed out at the same time. The parameter 

! 

"  acts like a cut-off value; image regions 165 

with gradient norm below 

! 

"  will have more noise removed while regions with a higher 

gradient norm will stay sharp.  

The diffusion equation can be discretized by the finite difference approach using the first-

order neighborhood system. Each pixel has four neighbors: the north, south, west and east 

neighbor pixels. Assuming 

! 

"x = "y =1 in the two-dimensional case, the discretized 170 

version of Equation (3) is  

! 

Iij
t+1
" Iij

t

#t
= [pN $ %N I + pS $ %SI + pW $ %W I + pE $ %EI]ij

t      (5) 
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where

! 

"t is discretized time step, [pN, pS, pW, pE ] are the values of the diffusivity function 

at the neighboring pixels of location

! 

Iij , and ∇*I is a notation for the difference between 

the pixel value of one neighbor and

! 

Iij itself. In this work, 

! 

"t = 0.1 was used. 175 

The simulated breast CT data revealed a pattern of noise on its line integral images. That 

is, toward the chest wall of the breast the noise is larger. When the photon fluence is 

reduced, the phenomenon becomes even more obvious. A line profile is shown in Figure 

2 to help illustrate this point. It can be explained theoretically. Again, a simplifying 

assumption of monochromatic beam is used. If 180 

! 

Iij ~ Poisson("ij )

lij = log
I0

Iij
= log I0 # log Iij

, then the variance of the line integral

! 

lij  can be approximated 

by the delta method 24 using the second-order Taylor expansion:  

! 

var(lij ) = var(log Iij ) " var(Iij ) *[ f '(log Iij )]
2
"
1

#ij
.     (6) 

This formalism can be integrated into the PDE denoising technique by adapting the 

parameter 

! 

"  in the diffusivity function spatially as: 185 

! 

"ij # var(lij ) .          (7) 

The resultant PDE denoising technique is denoted PDE for Tomography/Tomosynthesis 

(PDEtomo). 

The PDE denoising method can be applied to the CT data at different points in the 

reconstruction process. When a Filtered backprojection (FBP) algorithm is used for 190 

reconstruction, there are four potential locations where the denoising techniques can 

applied, which are illustrated in Figure 3. In this study, the denoising techniques were 
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applied at step 2. That is, the line integral images are processed and these denoised data 

were used in the FBP algorithm. 

The datasets were also processed by Wiener adaptive filtering technique commercially 195 

implemented by MATLAB (Mathworks Inc, Natick, Massachusetts), for comparison.  

Image Evaluation 

Contrast of the lesion, noise level, contrast-to-noise ratio (CNR) and resolution 25 are 

metrics for the quantitative evaluation of the denoising technique. These metrics were 

calculated based on the reconstructed slices of the simulated breast. The contrast of the 200 

lesion is defined as the relative difference between the average pixel values within the 

lesion and those outside the lesion. The noise level is characterized by the percent noise, 

that is, the standard deviation of the pixel values within a uniform ROI relative to the 

mean value. This is also called the coefficient of variation (COV). The CNR measure is 

the ratio of contrast of the lesion to the percentage noise, which is equivalent to the signal 205 

to noise ratio (SNR). 

In order to measure spatial resolution, a high intensity sphere was simulated within the 

breast, projected, and target reconstructed (with an in-plane pixel dimension of 0.2mm) 

around the high-intensity sphere. Then the edges of the circular disc within a 

reconstructed slice are averaged radically. For each specific denoising technique, a 210 

Gaussian function is fitted to the edge, and the full width at half maximum (FWHM) of 

that function was measured as the parameter to evaluate the spatial resolution. 
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Results 

Simulation Results 

In Figure 4, the three columns correspond to the reconstructed slices of the simulated 215 

breast CT data without denoising, with Wiener denoising and with the PDEtomo 

denoising, respectively. The four rows show the results using varying photon fluences 

using I0=2.5e3, 5e3, 7.5e3 and 2.5e4 correspondingly from the top to the bottom. The 

noise level is appreciably lower for each successive row. The reconstructed slice 

thickness was 0.5 mm and within-plane pixel dimension was 0.8 mm. These slices 220 

contain a lesion at the center, which is only barely visible for the highest fluence level 

(bottom panel). With Wiener processing, the lesion is visible for the highest two fluence 

levels. With PDEtomo processing, the lesion is visible for the highest three fluence levels.  

To demonstrate the effect of denoising on the uniformity of the noise level across the 

image, another reconstructed coronal view slice containing only homogeneous breast 225 

tissue is shown in Figure 5(a). For the horizontal center line, the standard deviation of a 

local 7x7 ROI centered at each pixel on that horizontal line is plotted in Figure 5(b) to (d) 

for photon fluence of 2.5e3, 5e3 and 2.5e4. 

In all three cases, the original image, as shown on the left of Figure 5(a), presents a non-

uniform level of noise such that the interior section has higher standard deviation values, 230 

that is, higher noise levels than the periphery. Wiener processing reduces the overall 

noise level, but the non-uniform trend remains in Figure 5(b) and 6(c) corresponding to 

lower photon fluences. The PDEtomo processed images reduce the noise and also the 

non-uniformity of the plot. For the highest fluence images in Figure 5(d), the effects of 

Wiener and PDEtomo denoising are very similar. 235 
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The CNR results based on the images depicted in Figure 4 are given in Figure 6. At the 

highest fluence of 2.5e4, CNRs of the Wiener and PDEtomo processed images are 3.59 

and 4.08 times that of the original one, respectively. The paired two-tailed student t test 

of CNRs of the Wiener and PDEtomo results gives the p-value of 0.0036, indicating that 

the CNRs of PDEtomo were statistically higher than those of Wiener. Similar trends were 240 

observed at the lower fluence levels. 

The resolution results are given in Figure 7. The first image in the top panel shows the 

full view reconstructed slice with a high-intensity sphere embedded into the center of the 

breast tissue. The ROI for targeted reconstruction is marked on the slice. The original 

reconstructed slice as well as the wiener denoised one are to the right of the first row of 245 

Figure 7(a).  

In the second row, the PDEtomo denoised result is shown in the middle. To its left, a 

Gaussian kernel is directly applied to the original target-reconstructed slice and its 

resultant blurred slice obtains the same noise level as the PDEtomo result. To its right, a 

corresponding Gaussian blurred one obtains the same resolution level. As a comparison, 250 

the PDEtomo achieves a low noise level and the high resolution simultaneously. In 

Figure 7(b), the noise and resolution values are obtained and plotted for both the 

PDEtomo and Wiener techniques. As shown in the noise-resolution plot, PDEtomo 

processing outperforms Wiener processing because it has lower noise and higher 

resolution. The noise levels of the Wiener and PDEtomo techniques are 12.0% and 4.7%, 255 

respectively. The noise level of Wiener is 2.54 times that of the PDEtomo. At the same 

time, the resolution measure was 0.2209 mm for PDEtomo and 0.2867 mm for Wiener. 

The resolution of PDEtomo is better than that of Wiener.    
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Human Subject Results 260 

Figure 8 and 9 show the coronal reconstructed slices from two human subject breast CT 

data. By visual comparison, PDEtomo technique (bottom row) reduces the noise 

considerably while maintaining the resolution of the original reconstruction (top row).  

 

 265 
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Discussion 

Dedicated breast CT imaging is an exciting new candidate that possesses the potential of 

improving breast cancer diagnosis over conventional mammography. Some preliminary 

studies 14, 26, 27 show that satisfactory images can be acquired using the same dose as 

standard two-view mammography. When this dose is divided among the potentially 270 

hundreds of individual projection images comprising each scan, the high level of 

quantum noise in the projection data will pass through to the final reconstructed volume. 

This motivates the development of denoising tools to effectively remove the noise, 

improve lesion conspicuity, and maintain image resolution.  

In this work, a partial diffusion equation (PDE) based denoising technique was 275 

specifically developed for processing breast tomography data. This PDEtomo technique 

takes into account the noise distribution characteristic in the projection image after 

converting to the line integrals via the nonlinear logarithm operation.  

Both the quantitative results in the simulation study and the visual inspection in human 

subject data study showed the promise of this new PDEtomo technique. In the simulation 280 

study, it was compared with Wiener technique, an adaptive technique that is accepted as a 

competitive denoising tool. The results show that the new denoising technique can 

achieve lower noise level in the reconstructed volume with higher resolution than Wiener 

technique. The low contrast lesion put in the center of the simulated breast can be better 

detected on the PDEtomo processed datasets than on the Wiener processed datasets, as is 285 

shown in Figure 4. Not only is the noise in the reconstructed slices filtered by PDEtomo 

lower than those by Wiener filtering, but the noise levels all over the breast region tend to 

be more uniform as well. This is shown in Figure 5. The advantage of PDEtomo over 
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Wiener filtering in terms of decreased noise level and improved noise uniformity are both 

more evident for lower dose cases, which indicates that the PDEtomo technique holds 290 

promise for processing datasets acquired at lower dose levels.  

Even though the theoretical description of the noise variance in the projection image due 

to the quantum noise and the logarithm operation is more approximate for the empirical 

data, the PDEtomo technique still provides good denoised images.  

There are some limitations in this study. Firstly, the simulated breast CT data are based 295 

on a monochromatic x-ray beam with the kV value set to be approximately the same as 

the effective kV value of the x-ray beam used to acquire the empirical data. Secondly, the 

parameters in the measurement model used for adding noise to the simulated projection 

images are all hypothetical, given that presently their empirical values are lacking. Hence, 

the task of calibrating the dose in the simulation study cannot be fulfilled at this stage. In 300 

future work, considerable optimization remains to be performed to calibrate the PDEtomo 

technique using empirical images taken with physical phantoms as well as human 

subjects. Given the robust trends shown in this study, however, the PDEtomo technique 

should continue to match or outperform the Wiener technique, especially if dose is 

further lowered such as to achieve a breast CT scan with equal or less dose than two-view 305 

conventional mammograms. 

Due to the very low photon fluence on each projection view in dedicated breast CT, the 

electronic noise is one of the major sources of the overall noise, especially in dense breast 

regions or if the dose is further reduced. The present version of the PDEtomo technique 

doesn’t consider the effects of additive electronic noise. It will be worthwhile to explore 310 

the possibility of taking the characteristics of this type of noise into account in the 
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denoising technique or to combine it with a statistical-modeling approach that explicitly 

treats the electronic noise.  

In conclusion, a partial diffusion equation based denoising technique was developed 

specifically for dedicated breast CT data. By incorporating into the algorithm the 315 

knowledge of the non-uniform distribution of the noise in the projection image after the 

preprocessing step, it provides excellent denoised data with sharp edges. The technique 

shows the most promise on datasets acquired with lower dose.  
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Figure 1 Illustration of a dedicated breast CT system. 345 
The x-ray tube and flat-panel detector rotate together around the breast. And the 
breast is the only region to be illuminated.
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Figure 2 One-dimensional line integral profiles across the breast on a projection 
image. 350 
The dashed (blue) and continuous (red) plots correspond to noise free case and the 
case with I0=2.5e3, respectively. The variance of line integral is larger at the center 
of breast region, and gets lower toward the skin. 



 29 

 

 355 

Figure 3 Illustration of the possible locations of image denoising module to be 
applied with respect to the reconstruction module for dedicated breast CT data.  
In this study, the denoising techniques are applied at location 2. 

 

360 
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 360 

Figure 4 The reconstructed slices of original, Wiener and PDEtomo processed 
datasets using the varying photon fluence levels from the simulation study.  
The central low contrast lesion is visible only at the highest fluence level with the 
original dataset. It is visible at the highest two fluence levels with the Wiener 
processed dataset, whereas it is visible at the highest three fluence levels with the 365 
PDEtomo technique.
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Figure 5 (a) The reconstruction slices without a lesion. Along the horizontal lines 
marked in (a), local noise level profiles are computed for original, Wiener and 
PDEtomo processed datasets at I0 of (b) 2.5e3, (c) 5e3 and (d) 2.5e4. 
PDEtomo processed results have lower and more uniform local noise levels than 380 
Wiener results. The difference is more manifest at lower fluence level. 
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Figure 6 CNR comparison between the original, Wiener denoised and PDE in a 385 
simulation study with I0=2.5e4.  
The PDEtomo has consistently higher CNRs than Wiener for the same data. The 
paired two-tailed student t test gives a p-value of 0.0036, which indicate the 
difference between the CNRs of PDEtomo and Wiener are statistically significant.  

390 
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Figure 7 (a) The target reconstruction around a high contrast object from original, 395 
Wiener processed and PDEtomo processed datasets, and (b) noise-resolution plot 
with I0=2.5e4. 
The data processed by PDEtomo has a lower noise level and higher resolution than 
the one processed by Wiener. The two Gaussian kernel blurred ones are to match 
the noise level or the resolution with the PDEtomo processed data. 400 
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Figure 8 Human Subject Result No.1 405 
Top row shows original reconstruction, coronal slices from normal breast. Bottom 
row shows same slices with PDEtomo denoising, resulting in remarkably reduced 
noise levels. 
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410 
Figure 9 Human Subject Result No.2 
Top row shows original reconstruction, coronal slices from normal breast. Bottom 
row shows same slices with PDEtomo denoising, resulting in markedly reduced 
noise levels. 
 415 
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ABSTRACT 
The underlying mechanism in projection radiography as well as in computed tomography (CT) is 
the accumulative attenuation of a pencil x-ray beam along a straight line. However, when a 
portion of photons is deviated from their original path by scattering, it is not valid to assume that 
these photons are the survival photons along the lines connecting the x-ray source and the 
individual locations where they are detected. Since these photons do not carry the correct spatial 
information, the final image is contaminated. Researchers are seeking techniques to reduce 
scattering, and hence, improve image quality, by scatter compensation. Previously, we presented 
a post-acquisition scatter compensation technique based on an underlying statistical model. We 
used the Poisson noise model, which assumed that the signals in the detector individually 
followed the Poisson process. Since most x-ray detectors are energy integrating rather than 
photon counting, the Poisson noise model can be improved by taking this property into account. 
In this study, we developed a Gaussian noise model by the matching-of-the-first-two-moments 
method. The Maximum Likelihood Estimator of the scatter-free image was derived via the 
expectation maximization (EM) technique. The maximum a posteriori estimate was also 
calculated. The Gaussian noise model was preliminarily evaluated on a full-field digital 
mammography system.  
 
KEYWORDS: Scatter Compensation, Scatter Reduction, Gaussian Noise Model, 
Expectation Maximization 
 
  
1.  INTRODUCTION 
 
Scattered radiation degrades medical images.  A recent Monte Carlo study showed that scattered 
radiation causes the drop of low-frequency modulation transfer function (MTF), changes the 
shape of MTF and adds considerable noise to projection images 1. In computed tomography (CT), 
scattered radiation leads to cupping artifacts on reconstructed sections. Therefore, removal of 
scattered radiation from projection images is essential for improved image quality, particularly 
for the latest advanced imaging radiography techniques including dedicated breast CT and breast 
tomosynthesis, which typically do not use anti-scatter grids. 
 
There are two categories of scatter compensation techniques: hardware based ones and numerical 
compensation methods. This study uses a numerical compensation method to develop a statistical 
scatter reduction technique. Previously, the exposure value of each pixel recorded by a detector 
was modeled by Poisson distribution 2. For flat-panel detectors, which belong to the type of 
energy integrating rather than photon counting, the underlying statistics is a compound Poisson 
process 3. It may be well approximated by Gaussian distribution. 
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In this study, we will propose a Gaussian noise model for scatter reduction, and derive a 
maximum likelihood expectation maximization (MLE or MLEM) algorithm and a maximum a 
posteriori (MAP) algorithm. We will then apply the algorithms to radiographs acquired on FFDM 
for preliminary evaluation. 
 
2. MATERIALS AND METHODS 
 
2.1 Gaussian Noise Model  
 
In the chosen numerical scatter compensation scheme, the projection image is the sum of the 
primary radiation and scattered radiation. We have modeled scattered radiation as the two-
dimensional convolution of primary radiation with a scatter kernel, which is displayed as a double 
exponential function (Figure 1). 
 

 
Figure 1: Schematic of a scatter kernel with a radically exponential shape. It has two parameters: full 
width at half maximum and magnitude).  
 
 
By the matching-of-the-first-two-moments method, we approximated the energy-integrating 
signal by using a Gaussian distribution and created a scatter compensation model called the 
Gaussian noise model.  
 

 
(1) 

 
 
 
 
 
where di, si, and yi are pixel values at location i corresponding to primary, scattered and total 
radiation, respectively, bi is the expectation of di, and σi1

2 and σi2
2 are the variance of pixel values 

related to the primary radiation and scattered radiation, respectively.  
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Using the expectation maximization (EM) algorithm shown in the appendix, the MLE of the ideal 
scatter-free image was derived with analytical form shown in Equation (2).  
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MLE estimate is known to increase high frequency image noise. To overcome this, some 
constraints can be put on the noise level within the estimated B, in other words, prior 
information about B can be provided. Thus, by Bayes’s Rule, 

)()|()|( BpBYpYBp ! ,         (3) 

 
where p(B|Y) is the posterior joint distribution of B, given the measured pixel values Y = {yi; 
i=1,…,N}, p(Y|B) is equal to the likelihood of B, and p(B) is the prior joint distribution of B = 
{bi; i=1,…,N}. 
 
We assumed B is a Markov random process. It therefore follows a Gibbs distribution: 
 

!/)(1)( BUe
K

Bp "
= ,         (4) 

 
where K is a normalizing factor which is independent of B, U(B) is the energy function, and β 
is a free parameter adjusting the relative weight of this prior on the maximum a posteriori 
estimator of B. When β approaches infinity, the MAP of B approaches the MLE of B. 
 
The energy function is the sum of the potential function, i.e., 
 

!
"

=
Cc

c BVBU )()( ,          (5) 

 
where C is the set comprised of all cliques in the image. In this study, the Gibbs prior is 
defined over a second-order neighborhood system (for each pixel, its north, south, east, and west 
neighboring pixels plus its four diagonal neighboring pixels), with each clique comprised of two 
neighboring pixels. There are many forms of the potential function Vc (B). We chose one 
that is adaptive to discontinuity 4: 

! 

Vc ({bi :b j}) =
(bi " b j )

2

#c
2

+ (bi " b j )
2

,        (6) 

 
where i and j are the neighboring pixels within the clique i~j and bi and bj represent their 
respective intensities. δc is an adjustable parameter to regulate the cut-off frequency of the 
noise in the image.  
 
The MAP estimate of {bi} was calculated through the two-step maximization procedure proposed 
by Hebert and Leahy 5. 

2.2 Test Images 

Images were acquired with a Siemens prototype digital mammography system (Mammomat 
Novation DR; Siemens, Erlangen, Germany) with 70 µm isotropic resolution. Uniform breast 
phantoms (CIRS, Inc., Norfolk, VA) were imaged (28kVp), with a Mo/Mo target/filter 
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combination. The phantoms were designed to be radiographically equivalent to a 4-cm-thick 
compressed breast with 50% glandular tissue density. A built-in square-shaped dent in the center 
of the phantom mimicked a high-contrast lesion in the digital mammography images. All images 
were acquired without an anti-scatter grid. For the purpose of scatter measurement, all images 
were repeated with an array of beam stops (lead discs 3 mm in diameter) superimposed on the 
breast phantoms. Because lead discs absorb all the primary radiation, only scatter radiation can be 
detected behind them (Figure 2). 
 

 
 
Figure 2: Radiograph of the tissue equivalent slabs. The arrays of black disks are the shadow of beam 
stops. The CNR values are obtained based on the bright square region of interest. 

Images were then be fed into the algorithms for processing. The results were then evaluated 
through various metrics described in the following subsection. 

2.3 Image Evaluation Metrics 

Three algorithms were employed to estimate the expected amount of primary radiation. Its 
effect was measured by the residual scatter fraction (RSF). At the same time, we anticipated 
that the contrast-to-noise ratio (CNR) would be constrained or even improved after image 
processing. We implemented a metric to estimate post-contrast CNR. Finally, we monitored 
with a test bar the effect of the algorithms on the spatial resolution of the images. 

2.3.1 Residual Scatter Fraction 

Scatter fraction (SF) is defined as the ratio of scatter radiation to total radiation. Residual 
scatter fraction (RSF) indicates how much of the scatter radiation remains after applying the 
scatter compensation algorithm. 
 
For our imaging technique, two sets of images of the phantom were obtained: one with, and 
one without, a beam stop array. The signals behind beam stops (lead discs) comprise the 
scatter radiation, while the total radiation, which is the sum of primary radiation and scatter 
radiation, will reach the region without beam stops. We calculated the measured primary 
radiation (Pmeasured) by subtracting the mean radiation of a region-of-interest (ROI) behind a 
beam stop from the mean of the same ROI location without a beam stop. In the image 
processed for scatter compensation, the mean of total radiation (T) in the same ROI location 
(Testimated) is the sum of the residual scatter radiation and the primary radiation. Thus, 

estimated

measuredestimated

T
PTRSF !

= .         (7) 

2.3.2 Contrast, Noise and CNR 
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Contrast was defined as the ratio of the difference between the mean radiation value of the 
lesion (Tlesion) and the background (Tbackground) to the mean of the background, that is, 

background

backgroundlesion

T
TT

Contrast
!

=
.         (8) 

 
Noise was derived by dividing the standard deviation (STDbackground) by the mean of the 
background radiation (Tbackground): 
 

background

background

T
STD

Noise = .         (9) 

 
CNR is the ratio of the contrast to the noise, i.e., 
 

background

backgroundlesion

STD
TT

Noise
ContrastCNR

!
== .        (10) 

2.3.3 Resolution 

Due to the nonlinearity of the resolution algorithm, we could not use metrics like MTF, 
which are designed for a linear system.  Instead, a test bar, comprised of alternating bright and 
dark lines with sizes corresponding to Nyquist frequencies with square wave function, was 
embedded in the phantom image.  
 
The contrast improvement factor (CIF), defined as the ratio of the contrast after image 
processing to the initial contrast, was obtained for the test bar with various initial contrast 
settings. A CIF of 1 or greater was used as the criterion for retaining the spatial resolution. The 
minimal initial contrast that the test bar can allow with CIF of1 or greater was recorded as an 
indication of the effect of the image processing on resolution. For the various initial contrasts, 
the corresponding CIF was computed arbitrarily at iteration 16. We determined the minimal 
initial contrast value that has a CIF of 1 or greater. 
 
3. RESULTS 
 
3.1 Scatter Compensation Technique -- Tissue Equivalent Slabs 
 
Figure 3 and Table 1 give the RSF, CNR and resolution results for MLE and MAP algorithms 
based on a Poisson noise model and Gaussian noise model. Both MLE algorithms reduced RSF 
values to close to zero and decreased CNR values from the original unprocessed value of 47 to 
slightly below 40. The minimal contrast that is retainable during processing using our Poisson-
model-based MAP algorithm was 1.8%. The MAP algorithms were as equally effective as their 
MLE counterparts in removing scattered radiation from the radiograph; however, they increased 
the CNR values to 56 and 63, for the Poisson noise model and Gaussian model, respectively. The 
minimal contrast retainable using the Gaussian model based MAP algorithm was 2.0%, slightly 
higher than that of Poisson-model-based MAP (1.8%).  
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(a)      (b) 

 
 
Figure 3: Plots of (a) residual scatter fraction and (b) contrast to noise ratio as the function of iteration 
numbers between MLE and MAP estimates of scatter free image {bi} based on Poisson and Gaussian noise 
models. While both techniques were effective at removing scattered radiation, the MAP based on the 
Gaussian noise model showed greater CNR improvement.  
 
 
Table 1: Resolution results of MAP estimates based on Poisson noise model and Gaussian noise model 
with the magnitude of scatter kernel of 0.52. The resolution results from the two models are close to each 
other.  

 Poisson Noise Model Gaussian Noise Model 
Minimum initial contrast that is 
retainable during processing 

1.8% 2.0% 

 
How the magnitude of the scatter kernel impacted the MAP algorithm based on the Gaussian 
noise model was also investigated. Figure 4(a) shows the RSF as a function of iteration for 
different magnitudes. When the magnitude is zero, there is no scatter reduction effect. As the 
magnitude increases, the steady-state RSF decreases. When the magnitude is larger than the 
measured value of 0.52, the scattered radiation is overcompensated such that RSF is less than 
zero. Figure 4(b) depicts CNR results for the same scatter kernel magnitudes. Overall, the larger 
the magnitude, the less CNR will increase. In the case of resolution, the smaller the magnitude, 
the lower the resolution (Table 2). For the magnitude of 0.2, the minimal contrast retainable 
during processing was 2.7%. For the magnitude of 0, where there was no scatter compensation, 
no contrast was retainable during processing. 
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(a)               (b) 

 
Figure 4: Plots of (a) residual scatter fraction and (b) contrast to noise ratio as the function of iteration 
numbers were shown for various magnitudes of scatter kernel using MAP estimates of scatter free image 
{bi} based on the Gaussian noise model. A magnitude of 0.0 corresponds to no scatter removal, whereas 
a magnitude of 0.65 overcompensates the scattered radiation, resulting in negative residual scatter 
fraction values. At each magnitude level, the contrast increases asymptotically.. 

Table 2: Resolution results of the Gaussian noise model based MAP estimates with various magnitudes of 
scatter kernel. The larger the magnitude of scatter kernel, the sharper the processed image is. For the 
magnitude of zero, i.e., no scatter removal, the resolution is always degraded. 

Magnitude 0.0 0.2 0.4 0.52 0.65 
Minimal initial 
contrast 

--- 2.7% 2.2% 2.0% 2.0% 

 
3.2 Scatter Compensation Technique -- Anthropomorphic Phantom 
 
The scatter removal procedure reduced SF of the radiograph acquired without a grid from 45% to 
10%, the level that an anti-scatter grid achieves (Figure 5, Table 3). At the same time, the 
procedure improved the CNR to around twice the value on the image acquired with a grid. 
 

 
               (a) with  grid       (b) without grid (c) without grid; scatter reduction 

 

 

 
 
 
 
 
 
Figure 5: Radiographs of the breast anthropomorphic phantom, (a) with an anti-scatter grid, (b) without 
an anti-scatter grid, and (c) without an anti-scatter grid and with scatter reduction. 
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Table 3: Corresponding residual scatter fraction and contrast to noise ratio results for the three images 
shown in Figure 5.  

 With grid w/o grid w/o grid; scatter reduction 
RSF 11% 45% 10% 
CNR 7.04 6.99 15.29 
 
 
4. DISCUSSION 
 
In this study, both MLE and MAP estimates of the scatter free image were derived based on a 
novel Gaussian noise model for energy-integrating detectors.  The preliminary results were 
obtained on the two types of phantoms (tissue equivalent slabs and a breast anthropomorphic 
phantom) obtained on a full-field digital mammography system. Both MLE and MAP techniques 
were effective in removing the scattered radiation, though MAP outperformed MLE in CNR. For 
the specific phantom and imaging condition, the MAP of the Gaussian noise model outperformed 
the MAP of the Poisson noise model. 
 
The next phase of this research will include a comprehensive evaluation of the scatter reduction 
technique on images acquired on a FFDM system. Also the technique can be applied on dedicated 
breast CT data for scatter reduction. 
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6. APPENDIX 
 
Derivation of MLE Algorithm based on Gaussian Noise Model 
 
Due to the convolution operation, the estimation of B = {bi; i=1…N} directly from Y does not 
have a simple analytic form. The MLE of B is thus derived through the EM algorithm as follows.  
 
Treat the measured Y = {yi, i=1,…,N} as an incomplete dataset, and unobserved (D,S) = {(di,si), 
i=1,…,N} as a complete dataset. The di ’s and si ’s given B are mutually independent, therefore 
the complete data likelihood is 
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Assuming {σi1

2, σi2
2 ; i=1,…,N} are known, we can obtain the complete data log likelihood by 

taking the logarithm on both sides, 
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The EM algorithm is comprised of two steps: one, the E-step, where the expectation of the 
complete data log likelihood with respect to the present estimate of B is computed, and two, the 
M-step, where a new estimate of B is obtained which will maximize the computed expectation in 
the E-step. 
 
First, employ the E-step: 
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Second, the M-step to find B(n+1) that will maximize Q(B|B(n)): 
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Solving the above equation for bk gives 
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Using B(n) to approximate B(n+1) in the right-hand side yields 
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As a good estimate of the primary image is formed, 0)**( )()(
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The same apparent form was obtained for Poisson noise model in Reference 2. But due to the 
different statistical models, the actual forms of dk

(n) are different and so is the iterative formula for 
bk. 
 
Equation (A7) combines with equation (A4) to give the following updated equation: 
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where 
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